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ABSTRACT

Central features of a mirror plasma are strong departures from Maxwellian
distribution functions, ambipolar potentials and densities which vary along a field
line, end losses, and the mirror field itself. To examine these features, mirror
theorists have developed analytical and numerical techniques to solve the Fokker-
Planck equation, evaluate the potentials consistent with the resulting distribution
functions, and assess the microstability of these distributions. Various combina-
tions of mirror-plasma features are present and important in toroidal plasmas as
well, particularly in the edge region and in plasmas with strong r.f. heating. In this
paper we survey problems in toroidal plasmas where mirror theory and computa-
tional techniques are applicable, and discuss in more detail three specific examples:
calculation of the toroidal generalization of the Spitzer-Harm distribution function
(from which trapped-particle effects on current drive can be calculated), evalua-
tion of the nonuniform potential and density set up by pulsed electron-cyclotron
heating, and calculation of steady-state distribution functions in the presence of

strong r.f. heating and collisions.



1. Introduction

The international magnetic fusion research effort is becoming ever more heavily
concentrated on toroidal devices. While many of the theoretical issues relevant
to these devices are specifically connected to the toroidal configuration, there are
also aspects of toroidal devices which are distinctly mirror-like, presenting oppor-
tunities for mirror theorists to apply their expertise. The purpose of this paper
is to survey these areas and to describe in some detail three specific examples of
toroidal-theory problems whose solution benefited from mirror-theory input.

The paper is organized as follows. In Section II we list some intrinsic features
of mirror plasmas and indicate where they occur in toroidal devices. The next
three sections are devoted to the specific examples: Section III describes a calcu-
lation of trapped-particle effects on current drive; Section IV discusses electron-
cyclotron-heating (ECRH)-driven potentials; Section V discusses the calculation
of distribution functions strongly heated by waves. Section VI is our survey of
other areas where mirror theory has potential impact. Concluding remarks are

given in Section VII.

I1. Intrinsic Features of Mirror Plasmas

Mirror plasmas have a number of features which are intrinsic to the configu-
ration. These include the mirror field itself, endloss, strongly non-Maxwellian dis-
tribution functions, and potential and density variations along a field line. In this
section, for each of these features, we briefly review the origin and consequences
for mirror machines, mention some relevant theoretical tools, and indicate where

the same or closely related features occur in toroidal devices.

The most obvious feature of a mirror machine is the mirror property itself,
which results in the division of electron and ion phase space into regions of trapped
particles which reflect off of the magnetic gradient, and passing particles which are
lost from the system. Tandem-mirror and multiple-mirror machines are additon-
ally complicated by the presence of particles trapped in different cells and particles
which pass between different cells but do not reach the ends of the system. Mirror
theory must thus contend with the resulting partition of a species into distinct
groups with different confinement properties and different axial extents, and, for
each group, axial variations of densities, collisionalities, etc. For many mirror-
theory problems, one can eliminate spatial dependence by exploiting the largeness
of the bounce frequency to construct bounce-averaged equations. The residual
effects of the mirror field are that the resulting energy-magnetic-moment space is
divided into passing and trapped regions and, in the case of multiple-well mirrors,
is multiply sheeted, and that the coeflicients in the kinetic equations are averages.
Tokamaks, stellerators and bumpy toruses all have mirror fields; bean-shaped toka-

maks and stellerators have coupled non-identical mirrors, like a tandem mirror.
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Studies of phenomena associated with trapped particles in these devices are essen-
tially mirror-physics studies, and tools originally employed for mirror studies, such
as bounce-averaged Fokker-Planck codes (see, e.g., Ref. 1), and analytic approx-
imations like the square-well approximation for the collision operator, are now
being applied to these devices [2,3]. Bean-shaped tokamaks have a particularly
striking resemblance to tandem mirrors, as will be discussed in Sec. VL.

The open-ended property of the mirror field leads to direct losses to the end
walls. In the bounce-averaged limit, particles which pass over the highest mirror
(more precisely, the highest combined electrostatic and magnetic hill) in the system
are lost; the distribution function for these particles must vanish. Consequences
include non-Maxwellian distributions, axial potential and density variations, and
a fundamental limit on the confinement of trapped particles due to collisional
detrapping. The latter consequence has been the subject of much theoretical work
[4-8]. In a tokamak, endlosses occur on edge-plasma field lines which strike a wall,
a divertor or a limiter. It has been suggested [9, 10] that this endloss is related
to the observation of the H mode. A closely related phenomenon which can occur
further away from the edge of a toroidal device is rapid loss (faster than collisional
replenishment) due to bad drifts. This has been discussed in connection with
trapped alpha particles [11] and particles trapped in a toroidal well in a stellerator
or a rippled tokamak [12], and has been proposed as a major limitation on the
operation of the bumpy torus EBT-S [13].

Another inherent feature of mirror machines is strongly non-Maxwellian dis-
tribution functions. In the bounce-average limit, non-Maxwellian distributions are
inevitable because of the vanishing of the distribution function in the loss region.
While it is possible to create electrostatic potentials which confine some species,
shifting the velocity-space loss region out to a high-energy tail of an otherwise
Mawellian distribution, the loss region must extend into the bulk for at least one
species. Often there is a deliberate attempt to enhance the departure of distribu-
tion functions from Maxwellian, through strong radio-frequency (r.f.) heating or
neutral-beam injection, to weigh more heavily a good-curvature region (as in the
anchor of a tandem mirror), or to manipulate the electrostatic potential. Thus mir-
ror experimentalists became the experts at producing, and theorists at calculating,
strongly non-Maxwellian distributions. As these distributions typically contained
ample drive for microinstability, mirror machines have for many years provided
fertile ground for calculation of loss-cone and anisotropy-driven instabilities, and
for the invention of schemes to manipulate the distributions so as to minimize
these instabilities [14,15]. Tokamaks, too, have significantly non-Maxwellian dis-
tributions, some of which, like those associated with runaway electrons in the
ohmic field, have been studied for many years. More recently, tokamak physicists

have been considering non-Maxwellian distributions closer to the mirror variety:
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distribution functions which vanish in some region due to direct particle losses, as
discussed in the preceding paragraph, and distribution functions which are appre-
ciably distorted from Maxwellian by strong r.f. heating in order to enhance current
drive or improve stability.

Because of the difference in electron and ion collisionalities, mirror machines
invariably develop electrostatic potential variations along field lines. This tendency
was exploited in the tandem mirror, and enhanced by r.f. heating in the thermal-
barrier tandem mirror. The potentials can be beneficial for axial confinement,
but were shown to be a source of enhanced radial transport [16,17]. In tokamaks,
neutral beam injection [18] and electron- or ion-cyclotron resonance heating [19,20]
can again produce potential variations along field lines; this is the subject of
Sec. IV.

II1. Trapped-Particle Effects on Current Drive

This section is the first of three which present examples of tokamak-theory
problems whose solutions were facilitated by mirror-theory ideas. In this section
we discuss trapped-particle effects on radio-frequency-driven currents. The calcu-
lation is discussed in greater detail in Ref. 3. The particular process nominally
under consideration is electron-cyclotron resonance heating (ECRH), but the cal-
culation applies equally well to lower-hybrid and even neutral-beam heating, so

long as the current carriers are at energies significantly greater than thermal.

Trapped particles degrade current-drive efficiency because they absorb energy
without producing current, and because a wave-induced push of an initially passing
particle into the trapped-particle part of phase space leads to an increment of
current opposite to that produced when the pushed particle remains passing. To
calculate the current, we follow Antonsen, Chu and Hui [21], who demonstrated
that the wave-induced current for any wave could be expressed in terms of the
solution to an adjoint problem, which is a generalization of the Spitzer-Harm

problem. The wave-induced current density is given by:

Jj / 3 o >

— = d&’ply, - —G 1

L= ([erra- o )
where () denotes a flux-surface average (or equivalently, a ds/B average, where s
is arc length along a field line) and G = e (B,/R) ™' exp(¢/T)g. Here R™! = |V¢)|,
¢ is the toroidal angle, ¢ is the electron energy, T is the temperature of the
background electrons used to construct the linearized collision operator, By is the

toroidal magnetic field, and g is the Spitzer-Harm distribution function, modified

to include mirror-trapped particles. The equation satisfied by g is
v b-Vg+C(g9) =vb-Voexp(—¢/T) (2)
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where C is the collision operator linearized about a background Maxwellian of tem-
perature T. [The adjoint technique used to derive Eq. (1) is essentially the same
procedure as that used earlier in the mirror program [22] to relate the collisional
loss rate of an electrostatically confined species in the presence of passing particles
to the solution with no passing particles.] Note that some sign errors in Sec. II of
Refs. [3] and [21] are corrected here. We bounce average Eq. (2), expanding g in
increasing powers of the ratio of the collision frequency to the transit (or bounce)
time. To leading order, g = 0 for trapped particles, while for passing particles, the
equation for g is

(@) =+ (%) exat-eim) (3

where the upper (lower) sign is for positive (negative) v and R; = B;/B,.

We evaluate the bounce-averaged collision operator in the high-energy (but
non-relativistic) limit mv2/2T > 1. To leading order in T/mv?, the equation
is separable in the speed v and n = v2,/v?, where the subscript 0 denotes
evaluation at the field minimum (outside of the flux surface). Hence we can
write ¢ = [(R¢/R)c*/(4vv})] exp(—¢/T)F(v)H(n) where F(v) = (v/c)*, v =
4rnetln A/m2v3, v, = (2T/m)'/? and Z = (1 + Z)/2, with Z the charge state.
Then we can reduce Eq. (3) to an ordinary differential equation for H(n),

_<RU>H+Zin<(1—R7))1/2>((li_:r::tl : )

v

Here, R = B/ By is the local mirror ratio on a field line. The boundary conditions
to be satisfied are that H be regular at n = 0 and vanish at the trapped-passing
boundary n = 1y = Bo/Bmax- ECRH current-drive efficiencies obtained from
numerical solution to Eq. (4) were presented by Yoshioka and Antonsen [23].

We now make the square-well approximation: in mirror physics, it is often
found that semi-quantitative properties of solutions to bounce-averaged Fokker-
Planck problems can be obtained by replacing the bounce-averaged collision oper-
ator by the local operator evaluated at the bottom of the magnetic well. Making
that approximation here, and introducing the variable A = £(1 — n)/2 = vy /v,
Eq. (4) becomes an inhomogeneous Legendre equation,

s d dH
—4H 4+ Z—(1 = )==—=4)
HIR=AR
This equation can be solved analytically. The solution which satisfies the afore-

mentioned boundary conditions is:

C [, A PallAD
=775 [l B PG(A,)] (5)



where P, is a Legendre function with index « satisfying the relation
ala+1)=-4/Z . (6)

and A, = (1 — 7n,)!/2. The solution given in Eq. (6) reduces the calculation of
the current driven by any wave including trapped-particle effects to quadrature,
assuming the wave-induced flux I'y, is known (which, in particular, is true for
weakly heated plasmas where the distribution function is nearly Maxwellian). The

solution is easily generalized to be semi-relativistic as described in Ref. 3.

To see how well the square-well approximation holds up, we calculate a specific
example, nonrelativistic ECRH current drive. For each intersection of a ray of
ECRH with a flux surface, the current-drive efficiency given by dividing the current
from Eq. (1) by the absorbed flux-surface-averaged power density reduces to:

J_o _ —m?c! [ de 7[D€€£(f)L(FH)]P||a;0a (7)
Py 8T f de 7[D€€L(f)]pua,9u

where D, is the ECRH energy diffusion coefficient, £ = /8¢ + (k/w)9/0py,
D|ja is the resonant parallel momentum m(yw — €82)/ky, w is the wave frequency,
{2 is the nonrelativistic cyclotron frequency, £ is the harmonic number, k| is the
parallel wave number, and 6§, is the poloidal angle at which the ray intersects the
flux surface. Here, the current density is given in units of env, and the power in
units of nmv?v, and the current density is related to its value at the outside of

the flux surface according to J/Jy = B/B,.

FIG. 1. Nonrelativistic ECRH current-drive efficiency vs. inverse aspect ratio for €9 /T = 10 and
Q/w = 0.9. Solid and dotted curves are for H determined numerically from Eq. (4) for circular
flux surfaces of radius r; dashed curves are for the square-well model.
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In Fig. 1, we compare results obtained from Eq. (7) using the Green’s function
determined numerically from Eq. (4) and the analytic square-well result Eq. (5).
We plot the current-drive efficiency versus inverse aspect ratio for fundamen-
tal ECRH resonance on the inside and outside extremes of a flux surface for a
Maxwellian electron distribution and €9/T = 2, where ¢ is the minimum resonant
energy. It is apparent that the square-well approximation is quite good, agreeing
to within a few percent except when the efficiency is near zero. This agreement
holds over a broad range of parameters. Figure 1 also illustrates that current drive
is more efficient for resonance on the inside of the flux surface than the outside;
this is because ECRH heating on the inside does not move passing particles to-
ward the trapped-passing separatrix. For resonance on the outside, we observe the
current reversing at moderate-to-large inverse aspect ratio; this is the “Ohkawa
effect” [24], whereby the reverse current associated with a wave-induced push of

an initially passing electron into the trapped region dominates.

IV. ECRH-Driven Potentials

In thermal-barrier tandem mirrors, ECRH is usually applied at the thermal
barrier to enhance the barrier potential. The mechanism is that the ECRH gen-
erates a population of energetic, mirror-confined electrons which do not respond
appreciably to the potential variations (which are small compared to hot-electron
energies); quasineutrality requires that thermal electrons be pushed away, which is
effected by the potential becoming locally more negative. The effect is particularly
strong on a transient basis if the ECRH is applied in a pulse short compared to ion
transit time scales, since then the potential can form before ions can flow into the
resulting potential well; this was observed in the Berkeley Multiple Mirror Exper-
iment MMX [20] . The shortness of the time scale accomplishes the same thing as
pumping of a steady-state thermal barrier, namely keeping the trapped-ion phase
space relatively empty.

The same potential-generation mechanism is also operative when ECRH heat-
ing is applied to a finite-aspect-ratio tokamak, and should be particularly effective
when the ECRH is applied in short pulses, as in the Microwave Tokamak Ex-
periment (MTX) under construction at Livermore [25]. (MTX is the Alcator-C
tokamak from MIT, heated by a free-electron laser driven by the ETA-II electron
accelerator at Livermore.)

We calculate the potential on a time scale short compared to ion-transit times
by dividing the electrons into a cold population with a Maxwell-Boltzmann distri-
bution (and potential response), and a hot group which is assumed not to respond
to the potential and is modelled as a bi-Maxwellian at the point along a field line
where the ECRH is resonant:

fr=Cexp[—(eL/T1L +¢/Ty))] . (8)
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Here, €1 and ¢) are the perpendicular and parallel energies at the resonance point,
T, and T} are the perpendicular and parallel temperatures, and C is a normal-
ization constant to be determined. The temperatures T, and T} are prescribed
in the present calculation, but in principle are determined by the dynamics of
particle motion in the intense heating field and competition with collisions (see,
it e.g., Sec. V). The ions are treated as a background of uniform density ng. The
calculation is described in more detail, and extended to longer time scales, in
Ref. 20.

We assume that the hot electrons are collisionless on the transit time scale;
the hot-electron distribution is then everywhere given by Eq. (8), as €, and ¢ are
constants of motion (related to local variables through constancy of energy and
magnetic moment). Then the local hot-electron density is given by

47 R(s) / dELdEH fu

m2 'U"
- (=] )3/2 Crg(R) 9)

where R(s) = B/B, is the mirror ratio relative to the resonance position r, A =

T, /Ty, and

nip(s) =

R

R<1
i-RpeE 0 st

o(R) = 1+[(71z )]
rpr-D 2!

We normalize the hot-electron distribution so that the total number of hot
electrons on a flux tube is a fraction n times the total electron number; this
determines C so that

ny = finog(r) (10)
with ; = n/ (g) and ( ) denotes a [ ds/B average along a field line.

One may verify from Eqgs. (9) and (10) that the hot-electron density peaks
at the resonance position (where ¢ = 1) and that, depending on values of A and
R, the maximum relative variation in hot-electron density occurs for resonance at
either the bottom or top of the magnetic well.

The potential variation is determined by quasineutrality,

®-9, no — na(s) 1 -7g9(R)
=ln ——~+— = N A S
T. nno — np(s«) In 1 —7g(R.) (11)

where 3. denotes some convenient reference point.

The calculated potential becomes singular at R = 1 when 7 = 1. From (10)
it follows that this always bccurs for the hot-electron fraction # less than one, as
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it can be seen from (9) that (g) < 1. Thus, if the ECRH is on long enough, the
heating process extinguishes itself (that is, the potential shuts off the flow of cold
electrons into the heating zone) before all of the cold electrons are converted to hot.
With a more realistic model in which the hot-electron response to the potential is
retained, the potential would never become singular, but it would become of the
order of the hot-electron energy, which would still be adequate to turn off the flow
of cold electrons assuming A is large. Additional fueling can occur only on the
time scale of the ion motion.

For the particular case of a circular cross-section tokamak with B~1! oc 1 +
8 cos s/sg with § = r/R and resonance at the inside of a flux surface, an explicit

closed-form expression for (g) is obtainable,
4 arctan
x(l—K21/z
= 12
=Ny wa (12)
T(KE-1z 0 07

K<l

where ¢ = |(K—1)/(K +1)|*/? and K = (2)6)!/2. Top-of-well heating is of interest
for tokamaks because it minimizes trapped-particle effects on current drive (see
Sec. III) and, as will be discussed below, it minimizes toroidal variations of the
ECRH-driven potential.

We consider application of the results to operation of MTX with a density
of 10'* cm™3 and a range of background electron temperatures T,. The expected
microwave field is sufficient to raise the perpendicular energy of a 1 keV electron
to as much as 10 keV on a single pass through resonance. We evaluate the hot-
electron anisotropy parameter A = T /T by taking T}y = T, and T to be half the
maximum amplitude of the energy oscillations of electrons in the intense microwave
field [25,26] . From Refs. 25 and 26, this implies, for fundamental ordinary mode
heating in MTX, A\ = 5Te_2/3 with T, in keV. The pulse duration 7, limits the
hot-electron fraction to about the ratio of 7, to the mean electron toroidal transit
time, giving n = 0.25T¢1/2 on a heated flux surface. For heating on the inside of
the flux surface at § = r/R = 0.1, we obtain from Eqs. (10)-(12) the results shown

=
€

as the curve labelled in Fig. 2.

We note that the expected range of electron temperatures is about 1-2.5 keV
[25] . Over this range, A®/T, ~ 0.3 — 0.5. Results at lower T, are relevant to
startup. Note that A® /T, increases with increased T; this is because the increase
in the hot-electron fraction (due to the increased number of electrons passing
through the microwave beam during the time 7,) more than compensates for the
decreased anisotropy. The divergence of the potential at T, of about 10 keV is

the singularity associated with the choking off of the flow of background (“cold”)
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FIG. 2. Expected buildup of potential variation along a field line A® versus cold electron
temperature Te for the MTX experiment, on the (e) hot-electron transit time scale, (it) ion
transit time scale and (ic) ion collisional time scale.

electrons discussed earlier; however, the neglect of the hot-electron response to the
potential invalidates the curve beyond T, ~ 4 keV. Also shown in Fig. 2 are the
potentials on the ion-transit and ion-collision time scales, obtained from Ref. 20.
(The latter result is essentially an academic exercise for MT X, as the hot electrons
relax on a time scale similar to the ion collision time.)

The potential structures are fundamentally variations along field lines. How-
ever, since the heating is typically localized in directions transverse to field lines,
one can expect potential variations in those directions as well. Of particular in-
terest are axisymmetry-breaking potential variations (toroidal in a tokamak, az-
imuthal in a mirror), as such variations are likely to significantly enhance neoclas-
sical transport. Consider a tokamak with a toroidally localized microwave source.
To the extent that the hot electrons are all passing (most nearly true for heating
resonant on the inside of the flux surface) then on an irrational flux surface, the
hot electrons flow over the entire surface, producing only a poloidal density and
hence potential variation. Trapped hot electrons, however, fill the flux surface only
on the relatively slow drift time scale. When this time scale is comparable to or
longer that hot-electron and ion collision times (as in MTX), the potential must
vary toroidally as well as poloidally. Since production of trapped hot electrons is
minimized for resonance on the inside of a flux surface (see Sec. III), this choice
minimizes toroidal potential variation for heating on irrational flux surfaces. On
a rational surface, a field line does not cover the flux surface; hence, in the neigh-
borhood of a rational surface, potential variation is confined approximately to a
helical band of field lines which pass through the microwave beam.
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Other possible consequences of these time-dependent, ECRH-generated po-
tentials include parametric coupling to low-frequency modes of the plasma, mod-
ification of current-drive efficiency, and enhanced ion heating. The latter arises
because, on the ion-transit time scale, ions flowing into the potential wells set up
by the hot electrons are accelerated, and then tend to equilibrate with the back-
ground ions trapped in the well on an ion-ion scattering time scale (faster than
the hot-electron-ion time scale in which the ions would otherwise be heated by the
hot electrons). If the potential variation is large compared to the background ion

temperature, a faster relaxation due to a two-stream instability is possible.

V. Strongly Heated Distribution Functions*

In order to be effective in enhancing the thermal-barrier potential dip, the
ECRH applied in a tandem mirror must be strong enough to render the electron
distribution appreciably non-Maxwellian. For tokamak heating and current-drive
applications, distortion of the distribution from Maxwellian is not required, but
typically does occur at power levels required to drive appreciable current. Fur-
thermore, the theory presented in Sec. III indicates that such distortion can be
helpful in raising the current-drive efficiency (see, e.g., Ref. 3), while the calcu-
lation in Sec. IV demonstrates that the distortion can generate significant poten-
tial variations. Thus calculations of strongly-heated distribution functions, which
are of central importance for tandem mirrors, are also of appreciable interest for
tokamaks; significant contributions have been made by theorists from both com-
munities (see, e.g., Refs. 27 and 28). The discussion which follows deals explicitly
with electron-cyclotron heating, but the general framework is applicable to other

heating schemes (such as lower hybrid) as well.

The calculations required for tandem mirrors and tokamaks have a similarity
which arises, oddly enough, out of the disparity in scale lengths for the two de-
vices. In general, at a particular point along a field line, the resonance condition
for a cyclotron wave, yw — 0 — kyp;/m = 0, corresponds to a single (curved)
line in either local momentum space or in energy-magnetic moment (e-u) space.
This curve shifts as the magnetic field changes along a field line. In a tandem mir-
ror, because mirror ratios are large, the scale length for appreciable change in the
resonance curve is comparable with or shorter than a typical scale length for the
wave illumination profile. Consequently, large portions of e-u space correspond to
particles which resonate with the wave somewhere within the wave illumination
profile. But because of the multi-cell nature of the device, e-u space is divided
into regions in which the relative roles of wave heating and collisions may be quite
different. In a tokamak, there is, usually, only one well, but the small mirror ratio

*The calculations in this section were done in collaboration with I. B. Bernstein and

V. Chan
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present within the wave illumination profile implies that the range of resonance
curves can be significantly limited. The net result is that, for either device, e-p
space can be divided into regions where waves dominate and where collisions dom-
inate; the theoretical task is to solve the appropriately ordered kinetic equations in
each region, with suitable boundary conditions providing the link between regions.
An example of this calculation for tandem mirrors is given in Ref. 27 and is the
subject for my workshop presentation at this School. Here, we describe such a
calculation for tokamaks.

It is convenient to use as variables the energy ¢ and r = ¢ — umecw/ef. The
level curves z =const. are the heating characteristics [29] along which the cyclotron
wave moves particles. The characteristics and the resonance band are sketched for
the case N = kjc/w <1 and Y = #2/w < 1 in Fig. 3.

L
Resonance Layer
Characteristics

FIG. 3. Sketch of characteristics (dashed curves) and resonance band (bounded by solid curves)
for cyclotron heating with Ny <1and Y < 1.

The kinetic equation has the form:

o _of
305 1€ =0 (13)
where C is the transit time times the collision operator, and the r.f. diffusion coef-
ficient D is zero outside the resonance band. We seek the form of the distribution
function inside the resonance band, as that is sufficient to determine the current-
drive efficiency [3].

We assume that the resonant region is in the high-velocity tail of the distribu-
tion function, so that the collision operator can be approximated by the linearized
operator corresponding to scattering of test particles off of a Maxwellian back-
ground. Then C has the properties that it is a second-order partial differential
operator in the variables ¢, z, and, in particular, has the form of a divergence of a
flux in these coordinates, C(f) = —0;¢z — 0.Tce.

We now proceed to the strong r.f. limit, in which the r.f. operator dominates

over collisions inside the resonance band. We treat this as previously described for
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tandem mirrors [30]. From the form of the expressions derived below, it can be
seen that the diffusion coefficient required for validity of the procedure increases
with the width of the resonance layer. For a broad layer, one can back away from
this essentially infinite r.f. limit by doing an explicitly two-dimensional calculation
in the layer, of the sort described in Ref. 27 and in my workshop presentation.
To leading order in an expansion in inverse powers of D, f is constant on
characteristics, fo = fo(€). Integrating the next-order equation in € across the
resonance band yields a consistency relationship which relates a second-order or-
dinary differential operator (in z) operating on fy to the first-order r.f.-driven flux

across the boundaries of the resonance band:
é(fo) = Fre,: (14)

where € = J deC is the aforementioned ordinary differential operator, ; and &,
are the boundaries of the resonance band (functions of z), and I'y. = —D3, f;.
Integrating Eq. (13) across a resonance-band boundary yields a flux-conservation

condition which can be used to eliminate f;,

de;
Fre = 'E:;:chz(fo) + I-‘cn (15)

where I'c, = I'ce — (dej/dz)Tc; evaluated just outside the resonance layer, and
J = 1,2. The problem is closed, i.e. Eq. (14) becomes a one-dimensional equation
for fo, if we can derive a relationship between the collisional flux I';,, and f along
the boundaries.

We can derive such a relationship from the Green’s function for the collision
operator in an unbounded domain (all physical ¢, z). The technique is similar to
that used for tandem mirrors in Ref. 22. Let the Green’s function G(z, ¢, o, &)

satisfy
—C(G) =V T'(G) =b(z — z0)b(c — €0) (16)

where the V operator is evaluated in ¢,z coordinates as if they were rectangu-
lar. In the nonrelativistic limit, G can be written explicitly in terms of Legendre
polynomials and Kummer functions. The Fokker-Planck equation for the actual

distribution function f outside the resonant layer is
V-T(f)=0 (17)

coupled with the boundary conditions that f and the flux be continuous at the
boundary with the resonant layer. Now we note that I'(f) has the form: ' =

—E-V(f/fM) where fy = exp(—¢/T) is proportional to a Maxwellian distribution
function, and C is a symmetric tensor. Multiplying Eq. (16) by f/fa and Eq. (17)
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by G/ fum, subtracting, integrating the resultant equation over a collisional domain
(one of the two domains outside the resonance layer), and taking zg, €9 to be within
the domain, we obtain

ds f(.’Bo 60)

—n- (fT(G) - GI(f)) = —=—=
fu ™ UT(@) = CTE) = )
where ds is an increment along the boundary in z, € space and n is a unit outward
(into the r.f. region) normal. Letting z¢, &9 approach a boundary and writing the
integral explicitly as an integral over z, we have an integral equation relating f

and the flux T'c, which appears in Eq. (14),

d_xl nf_ ' _ _f(w,ej(z))
7 (K(@2)f = Go,')en) = - == (18)
with e
K(z,1') =T [G(z,¢i(z), 2", ej(z")] - d—x’-I‘c:(G)

There are two such equations, with j = 1,2.

Using Eqgs. (14) and (15) we can eliminate, say, I'.,(e2) in favor of I'cn()
and fo in Eqgs. (18). Egs. (18) then constitute a set of two coupled one-dimensional
integral and integro-differential equations for the remaining pair of variables. In-
tegration by parts can be used to convert the integro-differential equation into an
integral equation.

The net result of the calculation is thus the conversion of a two-dimensional
partial differential equation into two coupled one-dimensional integral equations,
which can be solved much faster. We are presently exploring the possibilities for

approximate analytic solutions.

VI. Survey of Other Areas

In this section we discuss other areas of toroidal physics where a mirror-

theoretic point of view has been or should be helpful.

Bean-shaped tokamaks have some noteworthy similarities to tandem mirrors.
Moving along a field line in a bean tokamak, one finds, as in a tandem mirror, a
relatively short, small-mirror-ratio, good-curvature magnetic well and a relatively
long, larger-mirror-ratio well with unfavorable curvature. It has been suggested
[31] that one might enhance stability in a bean tokamak by providing extra pressure
weighting to the good curvature well; this could be arranged by driving an electron
or ion anisotropy through cyclotron-resonance heating in the good well. As in the
discussion of Sec. IV, the anisotropy will be accompanied by a potential difference
between the good and bad curvature cells, adding to the analogy with tandem
mirrors. To study the scheme, one would want to do multi-region Fokker-Planck
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calculations and MHD calculations with anisotropic pressures — both areas in
which computational tools and analytic expertise have been developed for mirror
systems.

An area where mirror physics is clearly applicable is in the edge region of a
toroidal device, where field lines ultimately intersect material structures (walls,
limiters or divertors). For a tokamak which is hot just inside the separatrix di-
viding closed and open field lines (so that collision times are longer than banana
periods), the mirror-like region extends a banana width into the closed-field-line
region. Ohkawa has pointed out [9,32] that the total energy confinement time
can be determined by the confinement time in this mirror region, underscoring the
importance of understanding this region. Some interesting work has been done.
Hinton [10], for example, has developed a model for the H mode in a collisional
edge region based on modelling endloss as a heat sink in classical transport equa-
tions. H-mode-like behavior (large temperature gradient at edge) can occur for a
suitable orientation of the divertor x-point and a sufficiently large heat through-
put. He and Ohkawa [32] have also noted that a hot, collisionless edge region also
has an H-mode-like large temperature gradient, with a scale length of order of the
ion banana width. More recently, Hinton has begun considering potential effects
on these processes [33] . Again, the physics closely parallels that in a tandem mir-
ror (see, e.g., Ref. 34.) On a given field line, electrons and ions are lost axially at
different rates, setting up an ambipolar potential ®; the variation of ® across field
lines affects radial transport. The potential is determined by requiring equality of
the net (radial and axial) electron and ion loss rates. For the case of the hot edge
plasma, the presence of loss-cone distributions should present microstability issues

similar to those studied for mirror plasmas.

Well into the interior of a toroidal plasma, mirror-like phenomena can arise
if there are phase-space regions in which select groups of particles can be rapidly
lost from the machine. This can occur for particles trapped in a toroidal ripple of
a tokamak, for high-energy particles (alpha particles, for example) trapped in the
main toroidal well of a tokamak, and for helically trapped particles in a stellerator,
and has been suggested as a major loss mechanism for hot electrons in EBT-S [13].
If these losses are faster than the collisional replenishment rate, they, like endloss
in a mirror, produce loss regions in velocity space where the distribution func-
tion to first approximation vanishes. The calculation of the distribution functions
and the associated linear and quasilinear microstability analyses are analogues of
mirror calculations. An example was provided by the concern [11] that trapped
alphas might be rapidly lost from a tokamak reactor. While more recent work has
indicated that the trapped alphas are probably confined [35], the ensuing analysis
by Nevins [36] is of interest for its parallel to a mirror calculation. The distribution

function is calculated by a Legendre-function expansion, as in the mirror-machine
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case, only it is the passing region rather than the trapped region that is populated.
If trapped alphas of sufficiently low energy were lost, the resulting distribution,
projected onto the v axis, would be nonmonotonic, implying an “anti-loss-cone”-
driven mode analogous to the mirror alpha loss-cone instabillity {37]. For less
severe conditions, the most likely candidate for instability is an anisotropy-driven

mode, an analog of the anomalous Doppler instability.

VII. Conclusion

We have discussed several areas in the physics of toroidal fusion devices where
ideas from mirror theory have been or are likely to prove helpful. Our examples
included the use of the square-well approximation to calculate trapped-particle
effects on r.f. current drive, the calculation of r.f.-driven potentials, and the de-
termination of distribution functions strongly heated by r.f., and we identified
bean-shaped tokamaks, the edge regions of toroidal plasmas, and other regions
where bad drifts cause direct particle losses as fertile hunting grounds for mir-
ror theorists. Our purpose is not to provide an exhaustive survey or an in-depth
account of work done, but only to illustrate by example that, in a fusion effort
increasingly dominated by toroidal devices, mirror theory and mirror physics in

general has a vital role to play.
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